
Spin heat accumulation and its relaxation in spin valves

T. T. Heikkilä,1,* Moosa Hatami,2 and Gerrit E. W. Bauer2

1Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 5100, Helsinki FIN-02015 TKK, Finland
2Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, The Netherlands

�Received 19 February 2010; published 12 March 2010�

We study the concept of spin heat accumulation in excited spin valves, more precisely the effective electron
temperature that may become spin dependent, both in linear response and far from equilibrium. A temperature
or voltage gradient create nonequilibrium energy distributions of the two spin ensembles in the normal-metal
spacer, which approach Fermi-Dirac functions through energy relaxation mediated by electron-electron and
electron-phonon coupling. Both mechanisms also exchange energy between the spin subsystems. This interspin
energy exchange may strongly affect thermoelectric properties of spin valves, leading, e.g., to violations of the
Wiedemann-Franz law.
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The electric conductance through ferromagnet �normal
metal � ferromagnet spin valves is a function of the magnetic
configuration.1 It reflects the spin accumulation, i.e., the spin
�index �� dependent chemical potential �� of the normal-
metal island. The latter parametrizes the spin dependence of
the energy distribution functions f��E�, whose description
also requires spin-dependent temperatures T�.2,3 As shown
below, these should in general be interpreted as effective
parameters.

In this Rapid Communication we describe the processes
affecting the T� and through them the thermoelectric re-
sponse in spin valves, which we find to be a sensitive probe
for the nonequilibrium state in the nonmagnetic spacer.
Whereas the spin accumulation relaxes only by scattering
processes that break spin rotation invariance such as spin-
orbit interaction and magnetic disorder, the spin heat accu-
mulation Ts=T↑−T↓ is sensitive also to electron-phonon
�e-ph� and electron-electron �e-e� interactions. Spin-flip scat-
tering in Al, Ag, Cu, or carbon is weak and hardly tempera-
ture dependent; the typical spin-flip scattering time �sf is of
the order 100 ps,4 which can be much longer than the dwell
times in magnetoelectronic structures. The interspin energy
exchange rate due to inelastic effects is strongly temperature
dependent and above cryogenic temperatures typically domi-
nates the direct spin-flip scattering in dissipating the spin
heat accumulation. The spin heat accumulation in normal-
metal spacers should not be confused with the spin �wave�
temperature of ferromagnets.5

In a spin valve �Fig. 1�, a nonmagnetic island is coupled
to two ferromagnetic reservoirs with parallel �P� or antipar-
allel �AP� magnetic alignments. The chemical potential of
the left �right� reservoir is �L�R� and the temperature is TL�R�.
The conductances GL/R� and Seebeck coefficients SL/R� of
the contacts between the island and the reservoirs depend on
spin �� �↑ ,↓�. Biasing the spin valve with either a voltage
�V= ��R−�L� /e or a temperature difference �T=TR−TL
gives rise to a spin-dependent energy distribution function
f��E� of the electrons on the island. As shown below, in
the linear-response regime this can be described exactly
by spin-dependent chemical potentials and temperatures,
such that f��E�= f0�E ;�� ,T��, where f0�E ;� ,T�= �exp��E
−�� / �kBT��+1�−1 is the Fermi-Dirac distribution function.
�� and T� are determined by conservation of charge, spin,

and energy �see Eqs. �2��. The response matrix of the spin
valve

� I

Q̇
	 = � G GS

TGS K
	� �V

− �T
	 �1�

relates the charge and heat currents I and Q̇ to the biases �V
and �T, respectively. Below, we derive expressions for the
heat conductance K and thermopower S, in the presence of
interspin energy exchange and for different magnetic con-
figurations.

The steady-state potentials and temperatures can be deter-
mined from Kirchhoff’s laws for charge and energy for each
spin.3 For small e�V /kB ,�T�T↑ ,T↓,



i=L,R

Ii,� + Gsf��� − �−��/e = 0,



i=L,R

Q̇i,� + K↑↓�T� − T−�� + Ke-ph�T� − Tph� = 0. �2�

Here Ii,�=Gi����−�i� /e+Gi�Si��T�−Ti� is the charge cur-
rent for spin � through contact i, Qi,�=L0Gi�T�T�−Ti�
+Gi�Si�T���−�i� /e is the corresponding heat current, Gi�
and Si� are the associated charge conductances and Seebeck
coefficients, and L0=�2kB

2 / �3e2� is the Lorenz number. Spin
decay is described by the �inter�spin conductance Gsf
=e2�F	 /�sf for an island with volume 	, density of states at
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FIG. 1. �Color online� Schematic spin valve biased with a volt-
age and/or temperature difference. Spin-flip and inelastic electron-
electron and electron-phonon scattering in the normal-metal spacer
lead to interspin energy exchange and change the thermoelectric

characteristics. I and Q̇ stand for the charge and heat currents flow-
ing into the island. Tph is the temperature of the phonon bath.
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the Fermi level �F and spin-flip relaxation time �sf. The term
Ke-ph describes the interaction with the phonons at tempera-
ture Tph. Interspin energy exchange is governed by the spin
heat conductance K↑↓=L0GsfT+Ke-e

↑↓ , where the first term
originates from the spin-flip scattering and the second is due
to e-e interactions. We are allowed to discard the spatial
dependence of the distribution functions when the diffusion
time �D=L2 /D in the island with length L and diffusion con-
stant D is shorter than both �sf and the spin thermalization
time �st=L0e2�FT	 / �Ke-ph+2K↑↓�.

The in general lengthy solutions of Eqs. �2� are consider-
ably simplified for left-right symmetric conductances and
Seebeck coefficients, parametrized by G0=G↑+G↓, P= �G↑
−G↓� /G0, S0= �G↑S↑+G↓S↓� /G0, and P�= �G↑S↑
−G↓S↓� / �G0S0� for both junctions. In the antiparallel case the
signs of P and P� in one of the junctions are inverted. In the
parallel configuration the heat conductance becomes

KP = L0GPT +
2Ke-phr�1 − P2
�

1 − P2
 + Ke-ph/�L0G0T�
�3�

and in the antiparallel configuration it is

KAP = L0GPT�1 − P2
� +
2Ke-phr

1 + Ke-ph/�L0G0T�
. �4�

The factor r= �Tph−TL� / �TR−TL�−1 /2 parametrizes the pho-
non temperature on the island: If the phonons are poorly
coupled to the substrate, as, for example, in perpendicular
spin valves or in suspended structures, Tph= �T↑+T↓� /2. For
the P configuration this yields r=0, whereas for the AP con-
figuration we get r=−K↑↓P / �2�Ke-ph+K↑↓+L0G0T��. In the
opposite limit r= �1 /2, viz. Tph is fixed to the bath tempera-
ture of the left or right reservoir. The coefficient 
= �1
+ �Ke-ph+2K↑↓� / �L0G0T��−1 describes interspin energy ex-
change. Factoring out the temperature dependence of Ke-ph
�T4 and Ke-e

↑↓ �T�+1 �see the discussion below� yields 
= �1
+ �T /Tch,ph�3+ �T /Tch,e-e��+2Gsf /G0�−1, where the character-
istic temperatures are Tch,e-ph= ��L0G0T4� /Ke-ph�1/3, Tch,e-e
= ��L0G0T�+1� / �2Ke-e

↑↓ ��1/� for electron-phonon and electron-
electron couplings, respectively. The exponent � depends on
the dimensionality of the sample. We are here mainly inter-
ested in three-dimensional �3D� samples ��=3 /2� in which
all sample dimensions exceed the thermal coherence length

T=��D / �2�kBT�.

In the parallel configuration the thermopower satisfies
SP=S0 and in the antiparallel one6

SAP

SP
=

1 − PP� + 2Gsf/G0 + 
P�P − P� − 2P�Gsf/G0�
1 − P2 + 2Gsf/G0

.

�5�

The temperature dependence of K and S is plotted in Fig.
2 for Ke-ph�Ke-e ,L0GsfT. For T�min�Tch,e-e ,Tch,e-ph��Tch,
the device operates as a spin heat valve in which the heat
current can be controlled by the magnetization configuration.
Contrary to the charge conductance, however, the magneto-
heat conductance �KP−KAP� /KP vanishes for T�Tch or 

→0. Thus the presence of inelastic scattering leads to a vio-
lation of the Wiedemann-Franz law K=L0GT for T�Tch.

The magnetothermopower �SP−SAP� /SP persists provided P
� P�.3 The measured heat conductance and thermopower as
a function of temperature and magnetic configuration may
hence yield unprecedented information on the energy relax-
ation in normal metals.

We now address the characteristic temperatures Tch,e-ph
and Tch,e-e. The former can be obtained directly from the
Debye form for the heat conductance between electrons and
acoustic phonons,7 Ke-ph= 5

2�	T4, valid for T�TDebye. Here
� is the e-ph coupling constant8 and the factor 1/2 takes into
account spin degeneracy. The characteristic temperature for
electron-phonon coupling thus reads

Tch,e-ph = � �kB
2

15��	
	1/3�G0h

e2 	1/3

. �6�

For T�TDebye, the electron-acoustic phonon scattering and
thereby interspin energy exchange saturates. Optical phonons
start to contribute in this temperature regime but are disre-
garded here.

The e-e scattering collision integrals with spin-dependent
distribution functions contain three terms,

Ie-e,���� = I�a�
����� + I�b�

�,−���� + I�c�
�,−���� ,

presented by the diagrams in Fig. 3.
Processes �b� and �c� induce interspin energy exchange,

which can be described in terms of a heat current flowing
between two spin ensembles,8

Q̇e-e
↑↓ = �F	
 d���I�b�

↑↓ + I�c�
↑↓ � . �7�

The direct spin current due to e-e interaction vanishes in the
absence of spin-orbit scattering, �d��I�a�

↑↓ + I�b�
↑↓ + I�c�

↑↓ �=0. In
3D, to lowest order in spin particle and heat accumulation,
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FIG. 2. �Color online� Temperature dependence of the heat con-
ductance K �solid lines, left axis� and thermopower S �dashed line,
right axis� of a structurally left-right symmetric spin valve with P
=0.9, P�=0.5 and when the electron-phonon relaxation dominates
the interspin energy exchange. The lines are plots of Eqs. �3�–�5�
and the symbols have been calculated from the full nonequilibrium
distribution function �Eqs. �10� and �11��. The results have been
calculated for P configuration with r=0 �circles� and r=1 /2
�squares� and AP configuration with r=0 �stars� and r=1 /2
�triangles�.
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��↑−�↓� / ��↑+�↓��1 and Ts / �T↑+T↓��1, we arrive at

Q̇e-e
↑↓ ��K�b�

↑↓ +K�c�
↑↓ ��T↑−T↓�, where

K�b�
↑↓ =

105��7/2�kB
7/2T5/2

32�2�ET�1 + F��3/2�
, �8a�

K�c�
↑↓ =

FC

�F + 2�

��2��3/2� +
35

16
��7/2��kB

7/2T5/2

2�2�ET�F + 1��3/2�
. �8b�

Here C=−1+ �F+1�3/2, F�−1 is the spin triplet Fermi-
liquid parameter �F=−1 corresponds to the Stoner instabil-
ity�, ET=�D /	2/3 is the Thouless energy proportional to the
inverse time it takes to diffuse over a length 	1/3 and ��x� is
the Zeta function. Summing the two contributions from Eqs.
�8� yields the characteristic temperature

Tch,e-e = 8��G0h

e2 	2/3ET

kB
�F + 1�

� � ��F + 2�
48FC�2��3/2� + 105�6 + F�3 + C����7/2��2/3

.

�9�

In one-dimensional �1D� and two-dimensional �2D� struc-
tures the spin-flip contribution �c� has an infrared
divergence9,10 that needs to be regularized. As a result, the
interspin energy exchange due to e-e scattering becomes
stronger and the corresponding Tch,e-e lower. This is espe-
cially relevant at low temperatures and small structures since

T may exceed 100 nm at T�1 K. We intend to analyze the
resulting interspin energy exchange in reduced dimensions in
the future.

In order to assess the relevance of our results for realistic
samples we consider a disordered island of a spin valve
coupled to the reservoirs via tunnel contacts. For example,
with F=−0.3 we get

Tch,e-e � 0.9 K �
D

0.001 m2/s�0.1 ��m�3

	

G0

0.01 S
�2/3

,

Te-ph � 1 K � �109 W m−3 K−5

�

0.1 ��m�3

	

G0

0.01 S
�1/3

.

Making the sample smaller and conductance larger increases
both characteristic temperatures, but the increase for Tch,e-ph
is slower. For 	=0.001 ��m�3 and G0=1 S we get Tch,e-ph
=22 K, whereas Tcr,e-e=400 K. We may therefore conclude
that in spin valves with metallic contacts and 3D spacers the
interspin energy exchange due to e-e interaction can be ne-

glected. The spin thermalization rate with F=−0.3 is

1

�st
� � 1

20 ns
� T

1 K
	3/2�0.001 m2/s

D
	3/2

+
1

25 ns
� T

1 K
	3� �

109 W m−3 K−5	� �
1047 J−1 m−3

�F
.

The first term comes from e-e scattering and the second from
e-ph scattering. This rate exceeds the spin-flip scattering rate
�10 K at temperatures above Gi�����Gi�

0 �1+ci���−�i��.
Above we assume that the electron energy distribution

function is well represented by Fermi-Dirac distributions
with spin-dependent chemical potentials and temperatures.
This is not true in general since f���� has the nonequilibrium
form8,11

f���� =
GL�fL + GR�fR + �Fe2	Icoll�f�, f−��

GL� + GR�

, �10�

where fL/R= f0�� ;�L/R ,T� are the distribution functions for
the reservoirs and Icoll describes all inelastic scattering
events. The charge �n=0� and heat �n=1� currents through
contact i then become

Ii�Q̇i = 

�

 d��� − �i�n Gi�

e1+n ����f���� − f i���� . �11�

Thermoelectric effects can be included by adding a weak
energy dependence to the conductances, Gi�����Gi�

0 �1
+ci���−�i��, and expanding to linear order in ci,�. Identify-
ing Si�=eL0ci�T, we recover Eqs. �4� and �5� in the regime
e�V /kB ,�T�TL ,TR�T even in the absence of collisions
�i.e., 
=1�. For ci�=0 and to linear order in the applied bias,
the nonequilibrium distribution �Eq. �10�� is identical to the
quasiequilibrium one. Under these conditions, the collision
integrals can be calculated by replacing the full distribution
functions by the quasiequilibrium ones. Numerical solutions
of the kinetic equations �see Fig. 2� indicate that in linear
response collisions and finite ci�s do not change this conclu-
sion.

Beyond linear response spin-dependent temperatures can
strictly speaking be invoked only in the presence of strong
inelastic scattering such that T↑�T↓. Nevertheless we can
define effective electron temperatures that satisfy the stan-
dard relation with the thermal energy density in the Sommer-
feld expansion:12

T� =
�6

�kB
�


−�

�

�f���� − 1 + ��� − �����d� . �12�

Proceeding with Fermi-Dirac distributions with effective
spin-dependent temperatures and chemical potentials, �� and
T� can be obtained from Eqs. �2� by replacing the expression
for the charge and heat currents through contact i with their
nonlinear counterparts,

I� =
Gi,�

e
��� − �i +

ci�

2
�L0e2�T�

2 − Ti
2� − ��� − �i�2�� ,

σσσ σ

σσσ σ

σ̄σ̄

σ̄σ̄

εεε

ε + h̄ωε + h̄ωε + h̄ω

ε′ε′ε′

ε′ − h̄ωε′ − h̄ωε′ − h̄ω h̄ωh̄ωh̄ω

(a) (b) (c)

FIG. 3. Electron-electron scattering vertices. �a� Equal-spin scat-
tering, which equilibrates the electrons but does not thermalize the
spins. �b� Spin-conserving scattering and �c� spin exchange scatter-
ing, which do thermalize the spins.
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Q̇i,� = Gi,��L0�T�
2 − Ti

2�/2 − ���
2 − �i

2�/�2e2�� + Gi�ci����

− �i��L0�T�
2 + Ti

2�/2 − ���
2 − �i

2�/�6e2�� . �13�

These equations are obtained by a direct integration of Eq.
�11� using Fermi-Dirac functions f i��� and f����. We also
have to replace the linear-response forms of the spin mixing
terms in Eqs. �2� by their forms far from equilibrium.

For example, for e-e scattering with F=0 we use Q̇��̄

=15��7 /2�kB
7/2�T�

7/2−T−�
7/2� / �16��2�ET�3/2�.

In the absence of collisions and for weak thermoelectric
effects it can be proven by direct integration that the effec-
tive temperatures defined by Eq. �12� agree with those which
follow from heat conservation. In Fig. 4 we present a com-
plete numerical solution of the kinetic equations along with
the results from the quasiequilibrium heat balance equations
from which we conclude that the two approaches for calcu-
lating T� agree also in the presence of interspin energy ex-
change.

Spin heat accumulation cannot be directly measured by
two-terminal transport experiments in linear systems. In or-
der to prove the presence of a sizable Ts far from equilibrium
it should be probed by spin-selective thermometry, such as a
generalization of the tunnel-spectroscopy in Ref. 11, by mea-
suring the shot noise of the spin valve, or through electron
spin resonance.

In conclusion, we have shown that interspin energy ex-
change in a spin valve affects the temperature and magnetic
configuration dependence of its thermoelectric properties.
The different thermalization mechanisms can be quantified
by characteristic temperatures �Eqs. �6� and �9�� above which
interaction effects become important. We introduce the con-
cept of spin heat accumulation via the spin-dependent effec-
tive electron temperatures T� in Fermi-Dirac distribution
functions, which can be used to describe transport properties
beyond the linear-response regime. We demarcate the regime

in which spin valves can be employed to control heat cur-
rents. Other types of operations can be envisaged as well,
such as spin-selective cooling of the electrons �see the left
inset of Fig. 4�.
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FIG. 4. �Color online� Spin-dependent effective temperature vs
voltage in an asymmetric spin valve with P=0.9, P�=0.5, and GR

=0.1GL. The lines are calculated from Eqs. �2� and �13� and the
symbols from Eq. �12� for numerical solutions of the kinetic equa-
tions. The upper curves are for majority, the lower for minority
spins, and different strengths of e-e scattering with F=0: no scat-
tering �solid line and circles�, weak scattering with ET=0.05kBT and
GL=100e2 /h �dashed line and squares�, and strong scattering with
ET=0.001kBT and GL=100e2 /h �dash-dotted line and stars�. Here T
denotes the temperature of the reservoirs. Left inset: behavior at
low bias with thermoelectric effects cL=10cR=0.02 / �kT�. Right in-
set: distribution function at e�V=10ET with different strengths of
e-e scattering.
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